Анализ данных — поиск закономерностей и построение моделей прогноза

На курсе рассматриваются основные типы моделей, используемые для поиска закономерностей в данных: регрессионный анализ, кластеризация данных, построение простых и обобщенных деревьев решений, сокращение данных — метод главных компонент. Эти методы, входящие в научную дисциплину «Распознавания Образов» (Pattern Recognition), являются основой такой быстро развивающейся дисциплины как Business Intelligence (BI) и широко используются в бизнес-аналитике. Кратко обсуждаются идеи и методы нейронных сетей и машины поддерживающих векторов (SVM — Support Vector Machine), а также методы bootstrap построения оценок при недостаточном числе исходных данных. Обсуждаются основные понятия «нечеткого» (fuzzy) анализа данных.

Предлагаемые алгоритмы могут быть использованы в базах данных для восстановления (предсказания) пропущенных значений.

Целью курса является знакомство слушателей с постановками задач поиска зависимостей и распознавания образов, описание математических моделей и разбор пошаговых действий (алгоритма) их решения. Здесь описаны процедуры проверки прогностической устойчивости моделей и правила определений области допустимых значений данных, поступающих для прогнозирования.

По окончании курса слушатели научатся понимать применимость основных методов анализа данных, например, при восстановлении пропущенных значений в БД и в задачах классификации и распознавания образов.

Регистрация: http://www.luxoft-training.ru/kurs/analizdannyh-poiskzakonomernosteyipostroeniemodeleyprognoza.html?ID_TIME=65319

Смотрите также