Сегодня математики пытаются помочь медикам представить, как устроены внутренние процессы в организме, или предсказать реакцию конкретного пациента на лечение с помощью языков программирования и без проведения дорогих и опасных экспериментов. Метод математического моделирования применяется в самых разных областях науки, в том числе в физиологии и медицине. В рамках проекта «Физтех.Читалка» молодой ученый, аспирант МФТИ Тимур Гамилов рассказал «Теориям и практикам», как математические модели помогают врачам ставить диагнозы, а спортсменам — рекорды.

«Лего» для ученых

Тимур Гамилов

Тимур Гамилов

Математическое моделирование начали использовать в спорте и медицине еще в 50-х годах. В этой сфере активно работают математики, информатики и физики различных специализаций. Метод математического моделирования устроен по принципу конструктора «Лего», в котором вместо деталей — данные о состоянии здоровья человека и математические формулы, на основе которых врачи ставят диагноз и составляют план лечения. Используя данные о медицинских показателях, математики и инженеры создают гипотезу, которую затем проектируют и проверяют с помощью специального языка программирования.

Неудивительно, что интерес к математическому моделированию в медицине и спорте растет: в США с 1961 по 2006 год процент бюджетных денег, которые тратятся на медицину, возрос с 4% до 20%. В других странах люди тоже хотят жить долго и хорошо, а готовность властей финансировать науку и текущий уровень развития технологий растут с каждым годом. Поэтому вместо того, чтобы проводить медицинские эксперименты на людях, в качестве подопытных кроликов ученые используют математические модели.

Модель для сборки: инструкция

Для построения любой математической модели необходимы данные. Базовые знания о строении и функционировании организма человека можно найти в анатомических атласах и другой справочной литературе. Но поскольку организм каждого человека уникален, врачи наблюдают за каждым пациентом индивидуально: проводят МРТ, компьютерную томографию, измеряют пульс, давление.

Представим, что перед командой ученых (биологов, математиков, физиков, программистов) стоит задача — помочь в постановке диагноза и поиске метода лечения пациентов со стенозом. Первым делом мы, ученые, должны понять, что такое стеноз, и расспрашиваем об этом врачей. Оказывается, стеноз — это возникновение бляшек на сосудах, которые создают разницу в давлении между участками сосуда. В результате сосуд может не выдержать такой нагрузки и порваться. Диагностируется заболевание двумя путями. Первый — качественный способ: нужно сделать снимок сосуда, найти бляшку и по ее виду сделать вывод. Второй — количественный: через бедренную артерию в нужные участки сосуда вводятся датчики, которые измеряют разницу давлений. Результаты количественного анализа — более точные. Это значит, что можно не оперировать пациента без надобности, а осложнения после лечения будут минимальными. Минусы этого способа — в цене и высоких рисках для пациента. Нужна дешевая и безопасная альтернатива, которая поможет поставить количественный диагноз и принять верное решение о лечении. Такой альтернативой может стать математическая модель процессов, происходящих в организме, связанных с развитием болезни.

http://news.nike.com/

http://news.nike.com/

В нашем случае нужно понять, по каким законам возникает разница в давлениях внутри сосудов, и записать эти законы в виде уравнений. Модели создаются под каждую проблему, болезнь или задачу. Для начала в уравнения (например, гидродинамики) вписывают величины, примерно одинаковые для всех пациентов — в науке они называются константами. Помимо констант, существуют параметры — показатели, которые учитываются для каждого человека индивидуально: длина, ширина сосудов, частота пульса, вид шума в сосудах. После того как мы вписали в уравнения константы, снимаем данные с пациента и записываем их в уравнения. Так ученые связывают параметры и константы с помощью формул: теперь в готовое уравнение мы подставляем разные значения для разных пациентов, чтобы получить необходимый результат — показатель разницы давлений между участками сосуда. Лечение стеноза, в зависимости от степени тяжести заболевания, врачи проводят либо медикаментозно (когда разница в давлениях небольшая), либо с помощью хирургического вмешательства (для более серьезных случаев).

После того как модель запрограммирована, работа не заканчивается. Во-первых, измерить большую часть параметров, которые нужно внести в уравнения, скорее всего, не получится без огромных затрат и дорогостоящих операций. Например, для детального определения структуры бляшек, упругих свойств сосуда и законов, по которым он меняется со временем, потребуется колоссальное количество сил и средств. Поставить такую технологию на поток вряд ли удастся.

Во-вторых, снятые параметры могут измениться через определенное время. Эластичность сосудов сильно меняется в зависимости от гормонов, которые на данный момент присутствуют в крови. А чтобы предсказать, сколько каких гормонов содержится в кровяном русле в интересующий нас период, нужно замоделировать в буквальном смысле весь организм человека, так как гормональный фон зависит от огромного количества факторов.

Врачи не знают математику, а математики — биологию, однако без диалога невозможна ни одна дисциплина на стыке наук

В-третьих, даже если мы сможем измерить все необходимые параметры и они не станут сильно меняться со временем, измерения, скорее всего, будут неточными. И чем больше параметров мы снимаем, тем активнее будет расти эта неточность. А поскольку в организме от небольшого изменения каждого параметра существенно меняются все остальные величины, такая неточность часто становится критичной. Например, даже несущественное количество введенного лекарства, растворяющего тромбы, может привести к передозировке, которая вызовет серьезное кровотечение.

Решаются эти проблемы путем упрощения модели: ученые по максимуму сокращают количество параметров и уравнений, стараются сделать их проще, или, как говорят математики, оптимизируют систему. Несмотря на технологическое несовершенство, метод математического моделирования уже работает и помогает людям. Благодаря математическому моделированию была создана известная модель токов в клетке Ходжкина — Хаксли, которая помогла описать, как распространяются электрохимические импульсы, передающие информацию в организме по нервным клеткам. Эта разработка считается одним из самых важных открытий неврологии XX века. За нее ученые получили Нобелевскую премию.

В помощь Усэйну Болту

Профессионалы рынка спортивных достижений шутят, что в 2015 году соревнования идут не между спортсменами, а между разработчиками программ тренировок. Чтобы исследовать живого спортсмена непосредственно во время тренировки, придется повесить на него кучу приборов: измерители пульса, давления, уровня сахара в крови — и еще, желательно, МРТ-аппарат. В таком обмундировании достичь высоких показателей (или хотя бы просто сдвинуться с места) нереально. А вот с помощью математической модели можно рассчитать интересующие показатели на компьютере: ученые заранее снимают параметры со спортсмена в состоянии покоя и составляют уравнения, из которых затем можно извлечь нужные параметры в состоянии физической нагрузки. Моделировать можно самые разные процессы: например, дыхание в клетках мышц футболиста во время бега до образования тромбов. Модели могут быть одномерными или трехмерными, а также учитывать большое количество параметров — например, степень упругости сосудов при моделировании сосудистой сети.

Математически смоделированные стратегии для тренировок — уже рутина для спортивной индустрии. Показатели великого бегуна Усэйна Болта почти совпадают с графиком кривой оптимального темпа для бега на 100 метров в каждый момент времени. На соревнованиях по прыжкам с трамплина на лыжах высота конструкции выбирается с использованием математической модели тел спортсменов так, чтобы нагрузки не стали критичны для организма.

Математика + медицина

Главная трудность в развитии метода пока заключается в том, что значительное количество разработок так и остаются теорией. В повседневное клиническое использование вводится крайне малая часть таких проектов. Ученые видят будущее моделей в их адаптации под реальные условия. Теоретические расчеты нужны и важны для понимания процессов, которые происходят в организме, но не менее важно научиться использовать такие расчеты глобально. Сильно упростит задачу, если пациентам будет легко и понятно снимать показатели самостоятельно.

Ученым из разных областей придется все чаще работать на стыке наук и сотрудничать с инженерами и врачами. Чтобы эти идеи не оставались на страницах научных журналов, а реально помогали людям, математики должны начать взаимодействовать с врачами, которые ставят перед ними конкретные медицинские задачи. Такое взаимодействие (из-за особенностей образования и способа мышления) часто дается обеим сторонам непросто: врачи не знают математику, а математики — биологию, все они пользуются разной терминологией и методами. Однако без подобного диалога невозможна ни одна дисциплина на стыке наук.

Не пропустите следующую лекцию: