Анатолий Бучин изучал вычислительную нейробиологию в России и во Франции, посвятил диссертацию исследованию причин эпилептического приступа, а после уехал в США, где работает над проектом о нервной системе гидры, знакомой всем со школы, но на самом деле малоизученной и представляющей большой интерес для нейронауки.

Анатолий Бучин

Где учился: физико-механический факультет Политехнического университета, Высшая нормальная школа в Париже. На данный момент — постдок в Вашингтонском университете.

Что изучает: вычислительную нейробиологию

Особые приметы: играет на саксофоне и флейте, занимается йогой, много путешествует

Интерес к науке возник у меня в детстве: я увлекался насекомыми, собирал их, изучал их образ жизни и биологию. Мама заметила это и привела меня в Лабораторию экологии морского бентоса (ЛЭМБ) (бентос — совокупность организмов, обитающих на грунте и в грунте дна водоемов. — Прим. ред.) при Санкт-Петербургском городском Дворце творчества юных. Каждое лето, с 6-го по 11-й класс, мы уезжали в экспедиции на Белое море в Кандалакшский заповедник — наблюдать за беспозвоночными животными и измерять их численность. Параллельно я участвовал в биологических олимпиадах для школьников и в качестве научных исследований представлял результаты работы в экспедициях. В старших классах меня заинтересовало программирование, но заниматься исключительно этим было не слишком интересно. Мне неплохо давалась физика, и я решил найти специализацию, которая объединяла бы физику и биологию. Так я оказался в Политехе.

Первый раз во Францию я попал после бакалавриата, когда выиграл стипендию для обучения на магистерской программе в университете Рене Декарта в Париже. Я много стажировался в лабораториях, научился записывать активность нейронов в срезах мозга и анализировать ответы нервных клеток в зрительной коре кошки во время предъявления визуального стимула. Получив степень магистра, я вернулся в Петербург, чтобы завершить свое обучение в Политехе. На последнем курсе магистратуры мы с моим руководителем подготовили российско-французский проект для написания диссертации, и я выиграл финансирование, приняв участие в конкурсе Высшей нормальной школы. Последние четыре года я работал под двойным научным руководством — Бориса Гуткина в Париже и Антона Чижова в Санкт-Петербурге. Незадолго до окончания работы над диссертацией я съездил на конференцию в Чикаго и узнал о позиции постдока в Вашингтонском университете. После собеседования я решил ближайшие два-три года работать именно здесь: мне понравился проект, а с моим новым руководителем Эдриенн Фэйрхолл у нас оказались схожие научные интересы.

О вычислительной нейробиологии

Объектом исследования вычислительной нейробиологии является нервная система, а также самая интересная ее часть — головной мозг. Чтобы объяснить, при чем здесь математическое моделирование, нужно немного рассказать об истории этой молодой науки. В конце 80-х в журнале Science вышла статья, в которой впервые заговорили о вычислительной нейробиологии — новой междисциплинарной области нейронауки, которая занимается описанием информационных и динамических процессов в нервной системе.

фото предоставлено Анатолием Бучиным

фото предоставлено Анатолием Бучиным

Во многом фундамент этой науки заложили еще биофизик Алан Ходжкин и нейрофизиолог Эндрю Хаксли (брат Олдоса Хаксли. — Прим. ред.). Они изучали механизмы генерации и передачи нервных импульсов в нейронах, выбрав в качестве модельного организма кальмаров. В то время микроскопам и электродам было далеко до современных, а у кальмаров настолько толстые аксоны (отростки, по которым распространяется нервный импульс), что они были видны даже невооруженным глазом. Это помогло аксонам кальмара стать удобной экспериментальной моделью. Открытие Ходжкина и Хаксли заключалось в том, что они объяснили с помощью эксперимента и математической модели, что генерация нервного импульса осуществляется за счет изменения концентрации ионов натрия и калия, проходящих через мембраны нейронов. Впоследствии оказалось, что этот механизм универсален для нейронов многих животных, включая человека. Звучит необычно, но, изучая кальмара, ученые смогли узнать, как нейроны передают информацию у человека. За свое открытие в 1963 году Ходжкин и Хаксли получили Нобелевскую премию.

Задача вычислительной нейробиологии — систематизация огромного количества биологических данных об информационных и динамических процессах, происходящих в нервной системе. С развитием новых методов регистрации нервной активности количество данных о работе мозга растет с каждым днем. Объем книги нобелевского лауреата Эрика Кандела «Principles of Neural Science», в которой изложены базовые сведения о работе мозга, увеличивается с каждым новым тиражом: начиналась книга с 470 страниц, а сейчас ее размер — более 1 700 страниц. Для того чтобы систематизировать такой огромный набор фактов, и нужны теории.

Об эпилепсии

Эпилепсией болеет порядка 1% населения Земли — это 50–60 миллионов человек. Один из радикальных методов лечения — удаление участка мозга, в котором зарождается приступ. Но здесь не все так просто. Примерно в половине случаев эпилепсия у взрослых людей развивается в височной доле мозга, связанной с гиппокампом. Эта структура отвечает за формирование новых воспоминаний. Если у человека вырезать два гиппокампа с обеих сторон мозга, он потеряет способность запоминать новое. Получится такой непрерывный день сурка, поскольку человек будет способен запомнить что-либо только на 10 минут. Суть моих исследований заключалась в том, чтобы предсказать не такие радикальные, но другие возможные и эффективные способы борьбы с эпилепсией. В диссертации я пытался понять, как начинается эпилептический приступ.

Чтобы разобраться, что происходит с мозгом во время приступа, представьте, что вы пришли на концерт и в какой-то момент зал взорвался аплодисментами. Вы хлопаете в своем ритме, а люди вокруг вас — в другом. Если достаточно большое количество людей начинают хлопать одинаково, вам сложно будет продолжать следовать своему ритму и вы, скорее всего, начнете хлопать вместе со всеми. Схожим образом работает эпилепсия, когда нейроны головного мозга начинают сильно синхронизироваться, то есть генерировать импульсы в одно и то же время. Такой процесс синхронизации может вовлекать целые области мозга — в том числе те, что контролируют движение, и тогда возникает припадок. Хотя большая часть приступов характеризуется отсутствием припадков, потому что эпилепсия не всегда возникает в моторных областях.

фото предоставлено Анатолием Бучиным

фото предоставлено Анатолием Бучиным

Допустим, два нейрона связаны между собой возбуждающими связями в обе стороны. Один нейрон пересылает импульс другому, что возбуждает его, и тот пересылает импульс обратно. Если возбуждающие связи слишком сильные, это приведет к увеличению активности за счет обмена импульсами. В норме этого не происходит, поскольку существуют тормозящие нейроны, которые уменьшают активность слишком активных клеток. Но если торможение перестает нормально работать, это может привести к эпилепсии. Зачастую это связано с излишним накоплением хлора в нейронах. В своей работе я разрабатывал математическую модель сети нейронов, которая может переходить в режим эпилепсии при патологии торможения, связанной с накоплением хлора внутри нейронов. В этом мне помогали записи активности нейронов человеческой ткани, полученной после операций на эпилептических больных. Построенная модель позволяет тестировать гипотезы относительно механизмов эпилепсии, чтобы прояснить детали этой патологии. Оказалось, что восстановление баланса хлора в пирамидных нейронах может помочь остановить эпилептический приступ за счет восстановления баланса возбуждения — торможения в сети нейронов. Мой второй научный руководитель, Антон Чижов в Физико-техническом институте в Петербурге, недавно получил грант российского научного фонда по исследованию эпилепсии, так что это направление исследований будет продолжаться в России.

Про интересные проекты

Сегодня немало интересных работ в области вычислительной нейробиологии. Например, в Швейцарии есть проект Blue Brain Project, цель которого — максимально детально описать небольшой участка мозга — соматосенсорной коры крысы, которая отвечает за выполнение движений. Даже в небольшом мозге крысы — миллиарды нейронов, и все они связаны между собой определенным образом. Например, в области коры один пирамидный нейрон образует связи приблизительно с 10 000 других нейронов. В проекте Blue Brain Project записали активность около 14 000 нервных клеток, охарактеризовали их форму и реконструировали около 8 000 000 связей между ними. Затем с помощью специальных алгоритмов они соединили нейроны вместе биологически правдоподобным образом, чтобы в такой сети могла появиться активность. Модель подтвердила теоретически найденные принципы организации коры — например, баланс между возбуждением и торможением. И сейчас в Европе есть большой проект, который называется Human Brain Project. Он должен описать весь человеческий мозг с учетом всех тех данных, которые имеются на сегодняшний день. Этот международный проект — своего рода Большой адронный коллайдер от нейронауки, поскольку в нем участвует около сотни лабораторий из более чем 20 стран.

Критики Blue Brain Project и Human Brain Project задаются вопросом, насколько важно огромное количество деталей, чтобы описать принципы работы мозга. Для сравнения — насколько важно описание Невского проспекта в Петербурге на карте, где видны только континенты? Тем не менее попытка собрать воедино огромное количество данных, безусловно, важна. В худшем случае, даже если мы до конца не поймем, как работает мозг, построив такую модель, мы сможем использовать ее в медицине. Например, для изучения механизмов различных заболеваний и моделирования действия новых лекарств.

фото предоставлено Анатолием Бучиным

фото предоставлено Анатолием Бучиным

В США мой проект посвящен изучению нервной системы гидры. Несмотря на то что даже в школьных учебниках биологии ее изучают одной из первых, ее нервная система до сих пор плохо исследована. Гидра — родственница медузы, поэтому она такая же прозрачная и обладает сравнительно небольшим числом нейронов — от 2 до 5 тысяч. Поэтому можно одновременно записать активность из практически всех клеток нервной системы. Для этого используется такой инструмент, как «кальциевый имиджинг». Дело в том, что каждый раз, когда нейрон разряжается, у него изменяется концентрация кальция внутри клетки. Если добавить специальную краску, которая начинает светиться при повышении концентрации кальция, то каждый раз при генерации нервного импульса мы будем видеть характерное свечение, по которому можно определить активность нейрона. Это позволяет записывать активность в живом животном во время поведения. Анализ такой активности позволит понять, как нервная система гидры управляет ее движением. Аналогии, полученные в ходе таких исследований, можно будет использовать для описания движения более сложных животных — таких как млекопитающие. А в дальней перспективе — в нейроинжиниринге для создания новых систем контроля нервной активности.

О важности нейронауки для общества

Почему нейронаука так важна для современного общества? Во-первых, это возможность разработки новых методов лечения нейрологических заболеваний. Как можно найти лекарство, если не понимаешь, как оно работает на уровне целого мозга? Мой научный руководитель в Париже Борис Гуткин, который также работает в Высшей школе экономики в Москве, занимается изучением кокаиновой и алкогольной зависимости. Его работа посвящена описанию тех перестроек в системе подкрепления, которые приводят к зависимости. Во-вторых, это новые технологии — в частности, нейропротезирование. Например, человек, который остался без руки, благодаря вживленному в мозг импланту сможет контролировать искусственные конечности. Алексей Осадчий в ВШЭ активно занимается этим направлением в России. В-третьих, в дальней перспективе это выход в IT, а именно в технологии машинного обучения. В-четвертых, это сфера образования. Почему, например, мы считаем, что 45 минут — это самая эффективная продолжительность урока в школе? Возможно, этот вопрос стоит лучше изучить, используя знания когнитивной нейронауки. Так мы сможем лучше понять, как нам эффективнее преподавать в школах, университетах и как эффективнее планировать рабочий день.

О нетворкинге в науке

В науке очень важен вопрос коммуникации между учеными. Для нетворкинга необходимо участие в научных школах и конференциях, чтобы быть в курсе текущего положения дел. Научная школа — это такая большая тусовка: на месяц вы оказываетесь среди других PhD-студентов и постдоков. Во время обучения к вам приезжают известные ученые, которые рассказывают о своей работе. Параллельно вы занимаетесь индивидуальным проектом, и вами руководит кто-то более опытный. Не менее важно поддерживать хорошие отношения со своим руководителем. Если у студента-магистра нет хороших рекомендательных писем, его вряд ли возьмут на стажировку. От стажировки зависит, возьмут ли его для написания диссертации. От результатов диссертации — дальнейшая научная жизнь. На каждом из этих этапов обязательно спрашивают отзыв руководителя, и если человек не слишком хорошо работал, то это довольно быстро станет известно, поэтому важно дорожить своей репутацией.

фото предоставлено Анатолием Бучиным

фото предоставлено Анатолием Бучиным

Если говорить о долгосрочных планах, я планирую пройти несколько постдоков, прежде чем найти постоянную позицию в университете или исследовательской лаборатории. Для этого необходимо достаточное количество публикаций, которые сейчас в процессе. Если все сложится, у меня есть мысли вернуться в Россию через несколько лет, чтобы организовать здесь свою лабораторию или научную группу.

Книги, которые рекомендует Анатолий:

  • Крис Фрит. «Мозг и душа. Как нервная деятельность формирует наш внутренний мир»
  • Оливер Сакс. «Человек, который принял жену за шляпу»
  • Александр Марков. «Эволюция человека. Книга 2. Обезьяны, нейроны и душа»
  • Steven J. Schiff. «Neural Control Engineering»
  • Eugene M. Izhikevich. «Dynamical Systems in Neuroscience»