В распоряжении генетиков появился инструмент, способный через несколько лет сделать научную фантастику реальностью. Медики будущего будут лечить болезнь Хантингтона заменой «больной» ДНК и останавливать рак, удаляя из организма дефектные гены. «Теории и практики» объясняют, как работает механизм «монтажа» генов и какую роль в нем играют бактерии.

В пятидесятых годах XX века ученые столкнулись со странным феноменом. Они обратили внимание на то, что некоторые вирусы по-разному заражают разные штаммы одной и той же бактерии. Некоторые штаммы — например, кишечной палочки — заражались легко и быстро распространяли инфекцию по колонии. Другие заражались очень медленно или вовсе были устойчивы к вирусам. Но однажды приспособившись к тому или иному штамму, в дальнейшем вирус заражал его уже без затруднений.

Биологам потребовалось два десятилетия, чтобы разобраться в такой избирательной устойчивости бактерий. Как выяснилось, способность определенных штаммов бактерий противостоять вирусам — ее назвали рестрикцией (то есть, «ограничением») — объясняется наличием у них специальных ферментов, физически разрезающих вирусную ДНК.

Особенность этих белков — ферментов рестрикции — в том, что они распознают небольшую и строго определенную последовательность ДНК. Бактерии «нацеливают» ферменты рестрикции на редкие последовательности, которых сами в своих генах избегают — но которые могут присутствовать в вирусной ДНК. Разные ферменты рестрикции опознают разные последовательности.

Каждый штамм бактерии имеет определенный арсенал таких ферментов и, таким образом, реагирует на определенный набор «слов» в геноме вируса. Если представить, что геном вируса — это фраза «мама мыла раму», то вирус не сможет заразить бактерию, опознающую слово «мама», но бактерия, нацеленная на слово «дядя», окажется беззащитной. Если же вирус сумеет мутировать и превратиться, скажем, в «баба мыла раму», то и первая бактерия потеряет свою защиту.

Почему открытие «бактериального иммунитета» оказалось на самом верху списка важнейших достижений молекулярной биологии? Дело не в самих бактериях и даже не в вирусах.

Отмерить кусочек ДНК

Ученые, описавшие этот механизм, почти сразу же обратили внимание на важнейшую деталь этого процесса. Ферменты рестрикции (точнее, один из типов этих ферментов) способны разрезать ДНК в четко определенной точке. Возвращаясь к нашей аналогии, фермент, нацеленный на слово «мама» в ДНК, связывается с этим словом и разрезает его, например, между третьей и четвертой буквой.

фермент рестрикции Mva1 (серого цвета) и ДНК

фермент рестрикции Mva1 (серого цвета) и ДНК

Таким образом, исследователи впервые получили возможность «вырезать» из геномов нужные им фрагменты ДНК. С помощью специальных «склеивающих» ферментов полученные фрагменты можно было сшивать — тоже в определенном порядке. С открытием ферментов рестрикции в руках ученых оказался весь необходимый инструментарий для «монтажа» ДНК. Со временем для обозначения этого процесса прижилась несколько другая метафора — генная инженерия.

Хотя сегодня существуют и другие методы работы с ДНК, подавляющее большинство биологических исследований последних двадцати-тридцати лет были бы невозможны без ферментов рестрикции. От трансгенных растений до генной терапии, от рекомбинантного инсулина до индуцированных стволовых клеток — любые работы, включающие генетические манипуляции, используют это «бактериальное оружие».

Знать врага в лицо

Иммунная система млекопитающих — в том числе человека — обладает как врожденными, так и приобретенными механизмами защиты. Врожденные компоненты иммунитета обычно реагируют на что-то общее, объединяющее сразу многих врагов организма. Например, врожденный иммунитет может распознавать компоненты клеточной стенки бактерий, одинаковые для тысяч разнообразных микробов.

Приобретенный же иммунитет полагается на явление иммунологической памяти. Он распознает конкретные компоненты конкретных патогенов, «запоминая» их на будущее. На этом основана вакцинация: иммунная система «тренируется» на убитом вирусе или бактерии, и в дальнейшем, при попадании в организм живого патогена, «узнает» его и уничтожает на месте.

Врожденный иммунитет — это пограничный пункт досмотра. Он защищает от всего сразу и при этом ни от чего конкретного. Приобретенный иммунитет — это снайпер, знающий врага в лицо. Как выяснилось в 2012-м году, нечто похожее есть и у бактерий.

фермент рестрикции

фермент рестрикции

Если рестрикция — это бактериальный аналог врожденного иммунитета, то роль приобретенного иммунитета у бактерий выполняет система с довольно громоздким названием CRISPR/Cas9, или «Криспер».

Суть работы «Криспера» заключается в следующем. Когда бактерия попадает под вирусную атаку, она копирует часть ДНК вируса в специальное место в собственном геноме (это «хранилище» информации о вирусах и называется CRISPR). На основе этих сохраненных «фотороботов» вируса бактерия затем изготавливает РНК-зонд, способный распознавать вирусные гены и связываться с ними, если вирус попытается снова заразить бактерию.

РНК-зонд сам по себе безобиден для вируса, но здесь в дело вступает еще один игрок: белок Cas9. Он представляет собой «ножницы», ответственные за разрушение вирусных генов — наподобие фермента рестрикции. Cas9 ухватывается за РНК-зонд и как бы на поводке доставляется к вирусной ДНК, после чего ему дается сигнал: резать здесь!

Итого, вся система состоит из трех бактериальных компонентов:

1) ДНК-хранилище «фотороботов» старых вирусов;

2) РНК-зонд, сделанный на основе этих «фотороботов» и способный опознать по ним вирус;

3) белковые «ножницы», привязанные к РНК-зонду и разрезающие вирусную ДНК ровно в той точке, с которой «фоторобот» был снят в прошлый раз.

Практически мгновенно после открытия этого «бактериального иммунитета» о бактериях и их вирусах все забыли. Научная литература взорвалась восторженными статьями о потенциале системы CRISPR/Cas9 как инструмента для генной инженерии и медицины будущего.

Как и в случае с ферментами рестрикции, система «Криспер» способна разрезать ДНК в строго определенной точке. Но по сравнению с «ножницами», открытыми в семидесятых, она обладает огромными преимуществами.

Ферменты рестрикции используются биологами для «монтажа» ДНК исключительно в пробирке: нужно сначала изготовить нужный фрагмент (например, модифицированный ген), и уже потом вводить его в клетку или организм. «Криспером» можно резать ДНК на месте, прямо в живой клетке. Это позволяет не просто изготавливать искусственно вводимые гены, но и «редактировать» целые геномы: например, удалять одни гены и вставлять вместо них новые. Совсем недавно о таком можно было только мечтать.

Как стало понятно за последний год, система CRISPR неприхотлива и может работать в любой клетке: не только бактериальной, но и мышиной или человеческой. «Установить» ее в нужную клетку довольно просто. Принципиально это можно делать даже на уровне целых тканей и организмов. В будущем это позволит целиком удалять из генома взрослого человека дефектные гены — например, вызывающие рак.

Допустим, присутствующая у вас в геноме фраза «мама мыла раму» вызывает в вас болезненную тягу к гендерным стереотипам. Чтобы избавиться от этой проблемы, вам нужен белок Cas9 — всегда один и тот же — и пара РНК-зондов, нацеленных на слова «мама» и «раму». Эти зонды могут быть любыми — современные методы позволяют синтезировать их за несколько часов. Ограничений по количеству вообще нет: «резать» геном можно хоть в тысяче точек одновременно.

CRISPR/Cas9

CRISPR/Cas9

Прицельная настройка организма

Но ценность «Криспера» не ограничивается «ножничной» функцией. Как отмечают многие авторы, эта система — первый известный нам инструмент, с помощью которого можно организовать «встречу» определенного белка, определенной РНК и определенной ДНК одновременно. Это само по себе открывает огромные возможности для науки и медицины.

Например, у белка Cas9 можно отключить «ножничную» функцию, а вместо этого привязать к нему другой белок — скажем, активатор гена. С помощью подходящего РНК-зонда получившуюся пару можно отправлять в нужную точку генома: например, к плохо работающему гену инсулина у некоторых диабетиков. Организуя таким образом встречу активирующего белка и выключенного гена, можно прицельно и тонко настраивать работу организма.

Привязывать можно не только активаторы, а вообще все что угодно — скажем, белок, способный заменить дефектный ген на его «резервную копию» с другой хромосомы. Таким образом в перспективе можно будет вылечить, например, болезнь Хантингтона. Главное достоинство системы CRISPR в данном случае — именно ее способность «отправлять экспедиции» к любой точке ДНК, которую мы можем запрограммировать без особых затруднений. В чем состоит задача каждой конкретной экспедиции — определяется только фантазией исследователей.

Сегодня сложно сказать, какие именно проблемы сумеет решить система CRISPR/Cas9 через несколько десятилетий. Мировое сообщество генетиков сейчас напоминает ребенка, которого пустили в огромный зал, до отказа забитый игрушками. Ведущий научный журнал Science недавно выпустил обзор последних достижений области под названием «The CRISPR Craze» — «Криспер-безумие». И все-таки уже сейчас очевидно: бактерии и фундаментальная наука в очередной раз подарили нам технологию, которая изменит мир.

В январе появились сообщения о рождении первых приматов, чей геном был успешно модифицирован системой CRISPR/Cas9. Мартышкам в качестве пробного эксперимента ввели мутации в два гена: один связанный с работой иммунной системы, а другой — ответственный за отложение жира, что непрозрачно намекает на возможное применение метода к homo sapiens. Возможно, решение проблемы ожирения методом генной инженерии — не такое уж далекое будущее.