Умение обращаться с бесконечностью — пожалуй, основное в математике. Математик Алексей Савватеев объясняет, что это такое, а заодно рассказывает о том, как человек открывал для себя числа: от рациональных к иррациональным, от алгебраических к трансцендентным. T&P публикуют отрывок из его книги «Математика для гуманитариев. Живые лекции».

Алексей Савватеев: Вот одна интересная задача. Начнем издалека. В 2000 году, где-то зимой, мы были в лесу в районе Радищева, праздновали чей-то день рождения. Вокруг было очень мало сухих деревьев, все спилили до нас. Было только огромное, совершенно сухое дерево. И это дерево огромного размера стояло и очень нас заманивало. У нас была двуручная пила, и мы начали пилить. Пилили-пилили, пилили-пилили и допилили. Дерево сделало «тцук…» и село на нашу пилу. Пила осталась внутри, а полностью спиленное дерево стоит и падать не собирается.

Но стоит подуть ветру, и оно упадет. В какую сторону оно упадет — совершенно непредсказуемо. Что делать? Надо или вставать и уходить, написав со всех сторон «Внимание, внимание до ближайшего ветра сюда не подходить», или пытаться уронить дерево. Мы решили с ним побороться. Взяли вспомогательное дерево и прислонили его к спиленному где-то на высоте десяти метров. Навалились, и оно поддалось.

Было видно, как дерево начало падать. Но скорость была чудовищно медленная: несколько сантиметров в секунду, едва-едва. Где-то минуту мы ждали, пока оно медленно наклонялось, и только потом оно начало ускоряться и через несколько мгновений рухнуло со страшным грохотом. Пришел я домой и написал уравнение падения дерева. В физике траекторию движения системы под действием сил можно выписать в виде уравнений. Такие уравнения называются дифференциальными. Это означает, что скорость изменения скорости, то есть то, что называется ускорение, зависит от сил, которые действуют на тело. Это один из основных законов физики, он позволяет свести все, что есть в обычной, не квантовой, механике, к системам уравнений. Можно выписать такое уравнение и для нашего дерева. И к своему удовольствию, исследовав это уравнение, я пришел к выводу, что, если дать дереву толчок очень маленькой силы, оно начинает падать очень, очень, очень медленно.

Я начинаю рассуждать, что дерево — это просто вертикальная палка, без толщины. Она стоит совершенно вертикально, но обладает массой. Массивная вертикальная палка. Кто-то толкает ее сверху. Ударит человек — палка падает (скажем) 1 минуту. Пролетит голубь, заденет — будет падать 10 минут. Начальная скорость верхней точки будет, скажем, 1 мм/с. И очень долго скорость почти не будет меняться. А если врежется муха, то палка будет падать час. Уравнение выдает удивительный результат: на самом деле нет никакой границы на время падения дерева, вообще никакой.

Рассмотрим похожую задачу. Есть вагончик, в котором на шарнире установлена тонкая железная вертикальная палка. Чуть-чуть вправо или влево — она падает, так же, как и рассмотренное выше дерево. Теперь представьте обратную задачу. Вы берете уже упавшую или под некоторым углом висящую палку. После чего придаете ей некоторый импульс — толкаете ее снизу вверх.

Какие возможны варианты? Во-первых, толчок может быть слишком маленький. Что произойдет с палкой? Поднялась и упала обратно. Теперь, допустим, подошел какой-нибудь бугай. Бабах по этой палке. Она р-раз и перелетела на другую сторону. Подходит кто-то немножко более сильный, чем я, но слабее, чем бугай. Толкает палку, а она все равно падает.

Вы качались на качелях-перевертышах? Мое детство отчасти проходило в городе Мценск. И в парке там была такая закрывающаяся изнутри кабинка с противовесом наверху, которую раскачиваешь, раскачиваешь, раскачиваешь, и она «переворачивается»: противовес оказывается внизу, а кабинка сверху (но благодаря свободному подвесу кабинка при этом вверх ногами не переворачивается). Я замечал, что наверху она долго движется с более-менее постоянной скоростью. Мы знаем, что с постоянной скоростью движутся тела, на которые не действуют силы. На кабинку силы, конечно, действуют, но вертикально вниз. В момент, когда кабинка проезжает верхушку, сила перпендикулярна линии движения, поэтому скорость почти не меняется. И если аккуратно выверить движение, то кабинка практически остановится наверху.

Вернемся к нашей палке. Если вы ударили слишком слабо, то результат будет — палка упадет обратно. Если очень сильно ударить, то палка перевернется на другую сторону. И есть ровно одна сила удара, одно вещественное число, которую нужно придать палке, чтобы она остановилась вертикально. Вопрос. Сколько нужно времени в идеальном мире, в котором нет воздуха, трения и так далее, чтобы палка заняла вертикальное положение?

Слушатель: Смотря под каким углом было изначально.

А. С.: Нет. От того, под каким углом была изначально палка, зависит только то, с какой силой нам надо толкнуть палку. А времени понадобится бесконечное количество. Строгая математическая бесконечность. То есть, если палке придать такую силу, которая в точности достаточна для того, чтобы она достигла положения вертикального равновесия, то время, за которое палка будет достигать это положение, равно плюс бесконечности. В условиях задачи, когда мы говорим об идеальной математике, мы, естественно, не учитываем, что вокруг меняются обстоятельства. В идеальной ситуации время равно бесконечности. Я посчитал все это в 2000 году, потом рассказал физикам, а они сказали, что это очевидно, и все они это давно знали. Наверное, кому-нибудь не хочется верить, что потребуется бесконечное количество времени. Я дам еще одно подтверждение. Давайте вернемся к тележке. Пусть это будет вагон, внутри которого находится наша палка на шарнире. Вагон едет по маршруту Москва — Петербург. И мне сообщили, с точностью до 100% (так, как у математиков бывает, а в жизни нет) информацию о скорости, с которой вагон будет двигаться.

График изменения скорости поезда Москва — Петербург
Скорость, с которой поезд выезжает, сначала слегка уменьшается, потом достигает максимума и далее обращается в ноль (остановка поезда в Бологом). После этого скорость быстро растет, чтобы не было опоздания в пункт назначения.

Утверждение. Существует такое положение палки, такой угол, в котором я могу ее выпустить из рук в начальный момент времени, что она не упадет в течение всей дороги. Существует такой угол альфа, что, если я придам железке на шарнире этот угол, то она всю дорогу будет болтаться туда-сюда, но никогда не упадет. Обоснование этого факта изложено ниже.

Эта задача разобрана в книге, которую я всем рекомендую: Р. Курант, Г. Роббинс, «Что такое математика?» Идея решения этой задачи — использование непрерывности. Мы один раз уже с ней столкнулись в предыдущей задаче: есть такой импульс, получив который, палка не упадет ни направо, ни налево. Она встанет вертикально, но через бесконечное время. Задача про вагон, в котором движется железный стержень на шарнире, напрямую относится к предыдущей. Давайте посмотрим. Если палка уже лежит, то она будет всегда лежать. Она никогда никуда не встанет. А теперь рассмотрим для каждого начального угла поворота этой палки, в какое положение она в конечном счете ляжет: направо или налево. А если она останется висеть, значит, мы нашли то, что нам нужно.

Если палка ляжет, то она ляжет в одно из этих двух положений. Причем уравнения движения таковы, что если чуть-чуть поменять угол, совсем чуть-чуть, сторона падения не изменится. Если палка падала направо, то чуть-чуть изменив угол, вы не измените результата. Она все равно упадет направо. Тем самым, если в одно положение она падала, значит, и в близких положениях она тоже должна падать в то же положение. То есть, как говорят математики, множество положений, в которых оно упадет направо — открытое множество. «Открытое» — значит вместе с какой-то точкой содержит все близкие ей точки. Если из какого-то положения палка падает, то из всех достаточно близких положений она упадет в ту же сторону.

Интуитивно понятно, что мы можем всегда приподнять палку настолько мало, что она непременно упадет обратно. Но при малом отклонении от этого положения она тоже упадет. Давайте медленно изменять это положение. В каких-то положениях оно будет падать направо, а в каких-то — налево. Значит, где-то есть переход, угол, такой, что всюду справа она падает направо, всюду слева — налево. Что же это за угол? Единственный факт, который мы можем сообщить про этот угол, это что для такого угла палка не упадет вообще. Ничего другого про него неизвестно. Парадоксально, но это факт! Если вы в это поверили (а я вас не обманываю), тогда в том, что в близком к вертикальному положению палка может находиться сколь угодно долго, вас убедит следующее соображение. На стоянке в Бологом поезд может стоять 10 минут, а может — час. И в течение этого часа палка не упала. Она ведь не падала всю дорогу, в частности, она не упала и в течение стоянки. Что же она делала в это время?

Слушатель: Двигалась.

А. С.: Она была очень близко к вертикальному положению. Потому что, если бы она чуть-чуть от него отклонилась, она рухнула бы. Поэтому во время стоянки она была очень близко к вертикальному положению. А так как стоянка может быть сколь угодно долгой, из этого следует, что палка в районе вертикального положения может находиться сколь угодно долго. Поэтому-то она будет подниматься в него бесконечное время.

Это наше второе знакомство с бесконечностью. Сейчас будет третье.

Слушатель: Гвоздь программы.

А. С.: Бесконечность — это гвоздь программы, безусловно. Потому что бесконечность — это центральное понятие в математике.

Математика — это шаг через бесконечность. Освоение математики — это, когда вы становитесь с бесконечностью «на ты». И чем больше вы «на ты» с бесконечностью, тем лучше вы понимаете математику. Это наука о бесконечности. В этом смысле, математика и религия дополняют друг друга. Религия — это знание о бесконечности, математика — наука о бесконечности. Это две ипостаси бытия.

Сейчас мы поговорим о бесконечности в некотором другом разрезе, геометрическом. Помните ли вы, что такое квадратный корень? Корень квадратный из 100 — это 10. Потому что 10 ⋅ 10 = 100. А вот что такое корень квадратный из двух — это не так понятно. А что такое рациональное число? Если вы не знаете, не страшно. Но что такое целое число, знают все. Целые числа — это ноль, один, два, три, четыре, пять, шесть и так далее в положительную сторону, но, также минус один, минус два, минус три, минус четыре и так далее в отрицательную. У древних была большая проблема с отрицательными числами. Число, бесконечность, уравнение — это то, с чем математики все время имеют дело. Что такое число? Для древних число — это то, чем мы считаем предметы. Ноль для древних уже было что-то странное. Число или не число? Ноль — это отсутствие предметов. Отсутствие — это количество или нет? Сколько крокодилов в нашей комнате?

Слушатель: Ноль.

А. С.: Значит, вы считаете, что ноль все-таки натуральное число. А отрицательных чисел у древних греков не было. Вот если бы математика началась в России, то проблем с этим не было бы. Потому что -1, -10 — это мороз, снег идет. Все понятно — на улице отрицательная температура.

В России натуральные числа по традиции начинаются с единицы. То есть ноль является целым числом, но не является натуральным.

Когда я учился в школе, к нам как-то приехали американцы. И они сказали, что уровень умственного развития школьников в России и в Америке различаются как небо и земля. На что я заметил, что все очень просто. В Америке редко бывают отрицательные температуры, и поэтому у школьников есть проблема с постижением отрицательных чисел. Американец сильно задумался (тем более, что у нас — градусы Цельсия, а у них — Фаренгейта!). Действительно, у нас и трехлетние дети знают, что такое -5 и -3. Это когда снег, и мама на голову шапку надевает. Температура может быть нулевая, а может 1, 2, 3, -1, -2, -3 градуса. Но между ними тоже что-то есть.

Слушатель: Да.

А. С.: Я же могу сказать, что сейчас два с половиной градуса выше нуля?

Слушатель: Да.

А. С.: Или три и три четверти градуса.

Слушатель: Да.

А. С.: То есть я могу назвать доли. Их сейчас даже в детсаду рассматривают. Пришло ко мне на день рождение 15 детей. И, допустим, у меня есть 23 яблока. Я взял нож и аккуратно разрезал яблоки на 15 равных частей каждое. Каждому ребенку достанется (23 / 15) яблока, то есть по 23 дольки. Это число между единицей и двойкой: 1 < 23/15 < 2.

Такие числа древние отлично знали. Мы их называем рациональными, а они их называли дробями или просто числами. Рациональное число — это число, которое может выражать количество яблок, разделенное на количество детей. Пришло вот к вам «n», целое ненулевое число детей, а у вас имеется «m» — целое ненулевое число яблок. Получаем рациональное число m/n. Числитель дроби может быть меньше нуля. Ну, скажем, у вас было -5 яблок, и пришло 7 детей. Каждый получил -5/7 яблок.

Слушатель: Бедные дети…

А. С.: Или вы позвали 30 гостей на день рождения и сказали: «У меня (-700) тысяч рублей, в смысле, я должен за квартиру 700 тысяч рублей. Скиньтесь, пожалуйста, поровну». Вот вам и минус: -700/30. Когда вы говорите о таких вещах, как долги, то сразу вылезают отрицательные числа. Я предлагаю вам понять, что все эти числа живут где-то на числовой прямой. Число 5/7 живет где-то между единицей и нулем. Давайте начнем шагать по оси шагами в одну сотую. Мы, на наш взгляд, целиком замостим нашу прямую. 211/100, -135/100 и т. д.

И замостить вы можете сколь угодно плотно, можно ведь шагать шагами, равными 1/1000 или 1/1000000. Где бы вы ни сидели на числовой оси, где-то рядом с вами, очень близко живет число вида m/n.

Математики употребляют в такой ситуации страшный термин «всюду плотное множество». Это такое множество, в котором, куда бы вы ни сунулись, в любой близости от вас будут точки этого множества. Рациональные числа образуют всюду плотное множество на числовой оси. Вроде как вся прямая ими заполнена. Вполне можно было бы ожидать, что никаких чисел больше нет. Это логично, но это неправда. Древние обнаружили, что есть числа, заведомо непредставимые в виде m/n, ни при каких целых m и n.

Вот я и утверждаю, что корень из двух — именно такое число. Возьмем 4 квадрата со стороной единичка. И составим из них новый квадрат. Какой площади один маленький квадратик?

Слушатель: 1.

А. С.: Какой площади будет получившаяся фигура?

Слушатель: 4.

А. С.: Теперь я делаю следующее. Я провожу диагонали и спрашиваю вас, чему равна площадь получившегося внутри квадрата?

Слушатель: 2.

А. С.: Почему? Потому, что в каждом маленьком квадратике ровно половину взяли, а половину не взяли. Итак, совершенно очевидно, что площадь этой фигуры вдвое меньше, чем большого квадрата. С другой стороны, мы знаем, что если у квадрата сторона a, то площадь его равна a ⋅ a = a². Нам нужно найти сторону квадрата с площадью 2. А это и есть корень из двух. Значит, если у квадрата сторона 1, то его диагональ имеет длину «корень из двух».

Из школьного курса вы знаете теорему Пифагора.

Слушатель: Да.

А. С.: Теорема Пифагора говорит, что квадрат гипотенузы равен сумме квадратов катетов. Давайте я покажу доказательство этого без единой формулы. Теорему Пифагора не нужно доказывать формулами, ее нужно просто узреть, увидеть, она видна. Вот смотрите, я беру вот такое равенство: а² + b² = c². Мне нужно его доказать для любого прямоугольного треугольника со сторонами a, b, c.

Беру два квадрата со стороной a + b. Они будут одинаковые, но я их по-разному разобью на части.

Площадь внутри левого квадрата равна с². Площади квадратов внутри правого квадрата равны а² и b². Теперь смотрите, правый квадрат состоит из 4 треугольников и двух квадратов, а левый — из четырех таких же треугольников и одного квадрата. Но внешние квадраты имеют одинаковые площади. Из площади первого квадрата я вычел 4 одинаковые площади и из площади второго квадрата те же 4 площади. Значит, площадь оставшегося должна быть одинаковой. В одном случае остается с², в другом — сумма а² + b². Значит, а² + b² = c². Теорема Пифагора доказана. Но это было небольшое отступление. Я хотел сказать, что диагональ квадрата со стороной 1 по теореме Пифагора равна корню из двух, ну и по тому, что я нарисовал, она и в самом деле этому равна. Древние ничего не могли с этим числом поделать. Потому что, если отложить отрезок, равный нашей диагонали, от нуля, то вы попадете в точку, которая заведомо не равна никакому числу вида m/n. Ни при каких m и n. Вы переберете все целые числа, и в числителе, и в знаменателе, и никогда не получите число, которое в точности совпадет с корнем из двух. Есть очень много разных доказательств этого факта, и одно из них совершенно геометрическое. Мы же рассмотрим ниже алгебраический подход.

Причина смерти — корень из двух!
Говорят, что пифагорейцы (ученики знаменитого философа и математика Пифагора) сначала верили, что для вычислений вполне хватает положительных рациональных чисел, и что в этом проявляется божественная гармония окружающего мира. Однако «не в меру способный» ученик Пифагора додумался до того, что строго доказал НЕИЗМЕРИМОСТЬ диагонали квадрата (с единичной стороной) с помощью рациональных чисел. Пифагорейцы в гробовом молчании выслушали его доказательство и не смогли его опровергнуть. Гармония мира оказалась под угрозой! Поэтому было принято решение: никому про это не рассказывать, а нарушителя мировой гармонии наказали... утоплением в реке, на берегу которой все это и происходило. К счастью для математики, истина потом все равно «воссияла». За достоверность этой истории автор книги ответственности не несёт

Мы сейчас придумаем некую процедуру, которую мы применим к любому рациональному числу, и она всегда будет конечной. А дальше, я вам покажу, что та же самая процедура для числа «корень из двух» никогда не прекращается, тем самым это число не может быть рациональным.

Слушатель: То есть это несуществующее число?

А. С.: Существующее, но не в этом круге подозреваемых лиц. Это число существует, и оно очень нервировало греков, они не хотели допустить, что оно существует. Однако они отлично знали, что оно нужно для вычислений, но не выражается в виде отношения целых чисел. Они не понимали, что делать. Вроде число не существует, а оно-таки есть. Оно не должно существовать, но оно существует. Числа, которые не представляются в виде m/n, называются иррациональными.

Что такое вообще «иррациональность»? Нелогичность. Неразумность. Иррациональное поведение, например. Но в математике, в отличие от философии, есть совершенно конкретные объекты, иррациональные числа. Это такие числа, которые не представляются в виде m/n. Тем не менее, они вполне себе логичные и очень даже разумные.

Слушатель: А числа m и n, они целые?

А. С.: Целые. Непременно целые числа. Иррациональные числа — это числа, которые не являются отношением двух целых чисел. Рациональное число — это отношение двух целых. Есть еще одно труднопроизносимое слово, оно тоже в философском смысле кое-что означает. Слово «трансцендентно». Что же то оно означает в житейском (не математическом) смысле?

Слушатель: Находится за пределами.

А. С.: За пределами чего бы то ни было.

Слушатель: То есть иррациональное поведение — это поведение странное, но все же в каких-то рамках. А трансцендентное — это что-то за пределами понимания окружающих.

А. С.: В математике трансцендентные числа — это тоже определенный термин. Им противопоставляются алгебраические числа. Внутри множества алгебраических чисел живут как все рациональные, так и корни любой степени и много, много чего еще. Очень много разных чисел. И вот трансцендентные — это те числа, которые не являются алгебраическими. Выдумать неалгебраическое число достаточно трудно. Сначала думали, что все числа алгебраические. А в 19 веке произошел взрыв в математике, было обнаружено огромное количество неалгебраических чисел. Примером трансцендентного числа является знаменитое число «пи» — длина окружности с диаметром, равным 1. Доказательство трансцендентности одного единственного числа «пи» занимает 10 лекций на 4-ом курсе мехмата МГУ. Есть очень мало народу на Земле, которые знают это доказательство. Это труднейшая теорема. А вот про корень из двух все очень просто.

Есть вам два разных доказательства: одно длинное, но геометрическое, второе — короткое стандартное. Это некая процедура; ну, сделал это не я, а Евклид 2,5 тысячи лет назад. Называется эта процедура алгоритм Евклида. Разновидность алгоритма Евклида называется цепная дробь. Цепная дробь — это очень просто. Любое число можно разложить в цепную дробь. Числа вида m/n в цепную дробь раскладываются конечным образом, а корень из двух в цепную дробь раскладывается только бесконечным. […]

То, что √2 никогда не представляется в виде m/n, на самом деле означает то же самое, что равенство m² = 2n² всегда неверно. Никогда не получится взять один квадрат с целыми сторонами , умножить его площадь на два и получить другой квадрат с целыми сторонами (удвоенной площади). Ни для каких целых чисел. […]