Сердечный ритм, терморегулирование, секреция желез и работа многих других систем организма не зависит от нашего сознательного участия. Но, в отличие от всех этих процессов, дыхание бывает как произвольным, так и автономным, и отвечают за это разные участки мозга. Иногда даже в одном конкретном цикле дыхания происходит разделение труда: автономный вдох и произвольный выдох. С дыханием связаны и другие интересные вопросы. Почему выдох почти в два раза длиннее, чем вдох? Для чего мы зеваем и отчего икаем? Каковы причины синдрома внезапной детской смерти? И зачем дышать в пакет, если у вас паника? Обо всем этом — в отрывке из книги «Захватывающий мир легких» пульмонолога Кая-Михаэля Бе.

Захватывающий мир легких

Кай-Михаэль Бе
Попурри. 2019

[…] Смерть пришла во сне. Пациент, которого с признаками инсульта доставили в неврологическое отделение местной больницы, поначалу вроде бы неплохо шел на поправку. Кровообращение продолговатого мозга заметно улучшилось после нескольких дней лечения. Все сошлись на том, что имеют дело с рутинной ситуацией. А затем случился драматичный поворот: во время сна у пациента остановилось дыхание и он впал в кому. Сразу же были приняты меры по искусственной вентиляции легких, и больного удалось привести в сознание. Но, хотя днем состояние стабилизировалось, ночью после засыпания все началось сначала: летаргия, остановка дыхания, кома. И снова к пациенту была подключена аппаратура, с помощью которой его состояние быстро удалось привести в норму. На следующий день повторилось то же самое:

пока больной находился в сознании, у него было регулярное глубокое дыхание, а стоило ему уснуть, как оно останавливалось, словно кто-то выдернул шнур из розетки.

Но следующего ночного эпизода и очередной комы пациент уже не перенес. На фоне кислородного голодания у него случился инфаркт, и вскоре он умер. Поразило его «проклятие Ундины».

Американские врачи впервые описали этот редкий и загадочный случай в 1962 году. Вскоре феномен повторился у трех пациентов, перенесших операцию на мозге: в состоянии бодрствования все они дышали совершенно нормально, но, как только наступала ночь и они засыпали, дыхание останавливалось. Если их вовремя не будили, возникал серьезный дефицит кислорода, угрожавший жизни. Такая непроизвольная потеря организмом своих функций напомнила врачам легенду о русалке Ундине: для обеспечения верности любимого, жившего на суше, она заколдовала его таким образом, чтобы в случае измены он утрачивал контроль над вегетативными жизненными функциями. Поэтому врачи, описывавшие случаи непроизвольной ночной остановки дыхания, назвали это заболевание «проклятием Ундины». Персонаж Ундины вдохновил Ханса Кристиана Андерсена на написание сказки «Русалочка», а Уолт Дисней снял на ее основе мультфильм. Разумеется, в нем не было ни смертей, ни остановок дыхания и все жили счастливо до скончания веков!

Что же кроется за этим «проклятием»?

Мозг управляет как произвольным, так и автономным дыханием, но отвечают за это разные его участки.

Главный дыхательный центр человека находится в глубине головного мозга неподалеку от его перехода в спинной мозг. Это так называемый продолговатый мозг, а точнее говоря, его часть, носящая название «мост». Здесь находятся нервные клетки, которые, подобно метроному, регулярно посылают импульсы, активизирующие дыхание, что обеспечивает спокойный равномерный ритм дыхания, составляющий от 10 до 15 вдохов в минуту, в том числе и во сне. Командный центр в продолговатом мозге связан нервными волокнами спинного мозга с дыхательными мышцами. Эти волокна на уровне третьего шейного позвонка отходят от спинномозгового канала, образуя правый и левый диафрагмальные нервы, которые спускаются через грудную полость к диафрагме. Поэтому повреждения шейного отдела позвоночника всегда несут в себе угрозу для жизни. В отличие от поперечного поражения спинного мозга в грудном или шейном отделе, при котором наступает паралич, здесь речь идет о полном отказе дыхания. Неконтролируемое возбуждение этих нервов выражается в таком неприятном явлении, как икота. Ее причиной становятся внезапные подергивания диафрагмы под влиянием случайных нервных импульсов.

Но дыхательный центр представляет собой не только передающую, но и принимающую станцию, которая также важна для регулирования дыхания. В частности, он должен реагировать на изменения потребности организма в воздухе в зависимости от физической нагрузки и соответствующим образом регулировать частоту дыхания. Эту информацию дыхательный центр в первую очередь получает от так называемых хеморецепторов — датчиков, которые расположены на стенках аорты и в самом продолговатом мозге и которые реагируют на изменения содержания углекислого газа и кислорода в крови. Кроме того, в крупных группах мышц существуют датчики растяжения, передающие в мозг сигналы об усиленной деятельности мышц, чтобы тот повысил частоту дыхания. Возникает своего рода замкнутая цепь автоматического регулирования. При повышении активности мышц увеличивается расход кислорода для восполнения энергии, а за счет этого растет выработка углекислого газа. Совместно с другими отходами производства в мышцах, такими, например, как соединения молочной кислоты, углекислый газ вызывает повышение кислотности крови. Оба фактора — высокое содержание углекислого газа и изменение показателя рН — активизируют датчики в аортах и мозге, а тот, в свою очередь, увеличивает частоту импульсов дыхания. Диафрагма совершает более глубокие и частые движения, вследствие чего из организма выводится больше углекислого газа, а в него поступает больше кислорода. Уровень рН нормализуется. Регулирующая цепь замыкается, и частота дыхания вновь снижается.

Как ни странно, дыхательный центр буквально помешан на углекислом газе.

Как бы ни был важен кислород для выработки энергии и поддержания жизнедеятельности органов, все датчики центра дыхания заботятся исключительно об удалении отходов, реагируют только на изменения концентрации углекислого газа и показателей кислотности крови. Колебания содержания кислорода их абсолютно не волнуют, и на это есть веская причина: почти все процессы обмена веществ в организме протекают только при определенных показателях рН. Так что поддержание их стабильности — главная задача продолговатого мозга.

Кроме того, дыхательный центр получает нервные импульсы от других областей мозга, в частности от гипоталамуса. Это приводит к тому, что характер дыхания непроизвольно меняется под влиянием таких эмоций, как грусть, радость, возбуждение, гнев, агрессия, влюбленность. Произвольное управление дыханием осуществляется в коре головного мозга. Она способна вносить изменения в основной ритм, задаваемый продолговатым мозгом, когда дыхание требуется для других процессов, обычно для речи. Но если кора мозга отдыхает (например, во сне), то командование автоматически берет на себя продолговатый мозг.

Иногда даже в одном конкретном цикле дыхания происходит разделение труда: автономный вдох и произвольный выдох.

Ведь, в отличие от вдоха, который осуществляется за счет активного сокращения диафрагмы и расширения грудной клетки, выдох почти всегда является чисто пассивным процессом: легкие, грудная клетка и диафрагма просто возвращаются в исходное состояние, словно растянутая пружина, с которой сняли нагрузку. На этот возврат мозг отводит определенное время. У здоровых людей выдох длится примерно вдвое дольше, чем вдох. Если процесс затягивается (например, из-за снижения эластичности легких вследствие заболевания), мозг включает режим активных усилий для выдоха, чтобы оставаться «в графике». То же самое происходит и при высокой частоте дыхания, когда организм работает под нагрузкой, — в этой ситуации продолжительность обычного пассивного выдоха была бы слишком большой. Однако при всей гармонии бесспорным остается одно: автономная составляющая контроля дыхания играет доминирующую роль. Попробуйте сами задержать дыхание, насколько возможно. В итоге все равно победит продолговатый мозг.

Нарушения в работе дыхательного центра — это всегда тяжелейшие заболевания.

У пациентов с «проклятием Ундины» структуры продолговатого мозга, контролирующие непроизвольное дыхание во сне, полностью или частично разрушены, например в результате инсульта.

Могут сказаться также травмы, новообразования и инфекции. Существует и врожденная форма «проклятия». Если кора мозга исправно выполняет свои функции, то в состоянии бодрствования она подменяет продолговатый мозг. Чтобы не лишать пациентов сна, по ночам их приходится подключать к аппарату искусственной вентиляции легких или устанавливать электрический стимулятор работы диафрагмы.

Бесперебойная работа продолговатого мозга важна еще и потому, что он не только управляет вегетативными функциями во сне, но и контролирует их. Едва возникают экстренные ситуации (снижение артериального давления, болевые импульсы из различных частей тела, изменение содержания углекислого газа в крови), он тут же поднимает по тревоге кору головного мозга, и человек моментально просыпается. К сожалению, эта хитроумная система «сдержек и противовесов» не всегда работает идеально. Как и все сложные процессы управления центральной нервной системой, она нуждается в развитии и обучении.

Особенно трагичным примером сбоя в системе является синдром внезапной детской смерти. У малышей по какой-то неизвестной причине оказывается нарушена система аварийной сигнализации при отказе дыхания.

Паузы в дыхании, которые у младенцев возникают регулярно и являются признаком «обучения» дыхательного центра, внезапно перестают давать мозгу сигнал к пробуждению, и ребенок умирает во сне без каких-либо видимых причин. Это кошмар для любого родителя.

Источник: A24 / giphy.com

Источник: A24 / giphy.com

Может случиться и противоположная ситуация, когда отказывает кора мозга, а продолговатый мозг сохраняет свои функции. Такое бывает, например, при тяжелой черепно-мозговой травме или инфекции мозга. В этом состоянии апаллического синдрома, который называют также бодрствующей комой, полностью пропадает сознание и пациенты теряют способность к произвольному дыханию. Однако продолговатый мозг продолжает работать, поэтому нет надобности в искусственной вентиляции легких. Контроль над дыхательными процессами со стороны медицинского персонала имеет огромное значение для пациентов, находящихся в коме. Продолжительное отсутствие дыхательной активности свидетельствует о необратимом повреждении продолговатого мозга. Поскольку эта часть мозга при тяжелых травмах отмирает, как правило, последней, прекращение ее функций (наряду с прочими критериями) позволяет сделать вывод об окончательной смерти мозга и, следовательно, констатировать смерть пациента.

Другое, значительно более частое, но в большинстве своем не опасное нарушение контрольных функций дыхания носит название гипервентиляционного синдрома. Эмоциональное или психическое возбуждение, вызванное, к примеру, страхом либо паникой, приводит к чрезмерной стимуляции дыхательного центра в продолговатом мозге.

Глубокое ускоренное дыхание снижает уровень углекислого газа в крови, а показатель рН растет, создавая щелочную реакцию. Следствием становятся судороги, головокружение и помрачение сознания.

Эти симптомы дополнительно усиливают ощущение страха в гипоталамусе, и возникает заколдованный круг. Если пациент не может успокоиться самостоятельно, то нормализовать его состояние помогает повторное вдыхание выдыхаемого углекислого газа (для этого достаточно приложить ко рту полиэтиленовый пакет и подышать из него). Симптомы исчезают, и эмоциональное возбуждение затихает. Таким образом, если у вашей начальницы опять начинается «гипервентиляция», отнеситесь к этому снисходительно — возможно, все дело в гипоталамусе. В таких случаях достаточно энергичного возгласа: «Задержи дыхание!» Подобный приказ должен восприниматься не как неуместная дерзость, а как ценная медицинская рекомендация, заменяющая применение полиэтиленового пакета: благодаря этому углекислый газ временно перестает удаляться из организма, его содержание в крови нормализуется, а состояние опять приходит в норму. Кора мозга вмешивается в процесс, разрывая цепь между гипоталамусом и продолговатым мозгом. Данный пример демонстрирует, что, когда речь идет о вегетативных последствиях эмоционального всплеска, не надо безучастно наблюдать за происходящим. Вы можете взять на себя командные функции нервной системы и повлиять на ситуацию. Тесная связь эмоций, автономной нервной системы и произвольного контроля дыхания открывает широкие возможности. По крайней мере, один из элементов этой цепи находится под вашим личным контролем! Необходимо только освоить приемы, с помощью которых можно влиять на собственное самочувствие, сознательным усилием успокаивать вегетативную нервную систему. […]

Что же передают легкие по своим каналам? Пустые сплетни? Или мы имеем дело с неиспользуемыми избыточными мощностями? Отнюдь, от легких поступает не меньше информации, чем от органов чувств, но все эти сведения перерабатываются мозгом в подсознании. Правда, есть исключение: раздражение, приводящее к рефлекторному кашлю, или нехватка воздуха воспринимаются напрямую, как и сигналы от органов чувств. Но информация, обрабатываемая подсознанием, влияет на другие автономные функции организма, например на артериальное давление, сердечный ритм, пищеварение, потоотделение, проявление эмоций… А также на психические процессы.

Какую же информацию посылают легкие, если речь не идет об оптических и акустических сигналах, болевых либо тактильных ощущениях? Почти все эти сигналы имеют химическую или физическую природу. Хотя процесс дыхания и выглядит монотонным, ни один из 15 вдохов, которые мы делаем в минуту, не похож на другой, ведь каждый литр вдыхаемого воздуха особенный. Легкие относятся к воздуху не как потребитель, а как тонкий ценитель. Подобно сомелье, который находит в крошечном глотке вина привкусы дубовой бочки, земли, абрикоса, персика, сигары и мокрой кожи, легкие во вдыхаемом воздухе выделяют такие параметры, как температура, влажность, содержание солей, показатель рН, состав газов. Кроме того, воздух может содержать раздражающие и вредные вещества, чужеродные частицы, аллергены.

В легких, как и на языке и в носу, имеются вкусовые сосочки и рецепторы запахов.

Они могут выявлять продукты бактериального обмена веществ и определять на вкус многие яды. У них есть такие же рецепторы, которые в носу и во рту воспринимают, к примеру, освежающий аромат растительных эфирных масел. Но поскольку обработка сигналов от этих рецепторов в легких происходит без участия сознания, то мы можем только догадываться, какой эффект раздражители оказывают на дыхательные пути и автономную нервную систему. Бесспорно лишь то, что для распознавания, различения и измерения всех этих компонентов нужны очень чувствительные нервы. А их в легких хватает.

Чувствительные нервные волокна легких начинаются там, где можно собрать максимум информации: в бронхиальных мышцах, железах, альвеолах и, прежде всего, в эпителии. Здесь происходят главные события. Зачем же прокладывать линии передач от клеток соединительной ткани, в которых ничего не случается, если рядом бурлит жизнь? Эпителий дыхательных путей предлагает самую лучшую и разнообразную программу. Там регулярно происходят неприятности и скандалы, обеспечивающие самый высокий зрительский рейтинг! Не все волокна передают сенсации из эпителия, некоторым приходится довольствоваться скучной, но важной работой датчиков растяжения тканей. Их сигналы имеют большое значение, потому что они в буквальном смысле защищают легкие от разрывов. Когда легкие под воздействием диафрагмы достигают определенной степени растяжения, датчики посылают в дыхательный центр продолговатого мозга сигнал стоп. Мозг в свою очередь прекращает сокращение диафрагмы и подает сигнал на начало выдоха. Главное — ничего не порвать.

Спортсмены знают, насколько важна растяжка как средство профилактики травм. Легкие тоже время от времени осуществляют спонтанную растяжку — во время зевания.

Если дыхание на протяжении длительного времени носит спокойный и поверхностный характер, то датчики растяжения начинают скучать и вызывают зевательный рефлекс. Точно так же как мы устраиваем дома сквозняк, чтобы быстро проветрить комнаты.

Но вернемся к нервным окончаниям эпителия дыхательных путей. Здесь размещается густая сеть рецепторов, реагирующих на химические и физические раздражители, которыми могут быть частицы пыли, вещества, растворенные в водяных парах, продукты жизнедеятельности бактерий, соляная кислота, капсаицин, отвечающий за жгучий вкус перца чили, слизь, а также сигнальные вещества иммунной системы, выделяемые при воспалениях, и даже холод и тепло. Нервы сообщают обо всем, что оказывает на них воздействие. В здоровом состоянии их чувствительные окончания защищены эпителием дыхательных путей, но, если он поврежден, окончания лишаются защиты, выступают над поверхностью и начинают реагировать на раздражения. Самыми частыми причинами повреждений эпителия являются простудные вирусы и воспаления, возникающие, к примеру, в результате аллергии, инфекции или контакта с вредными веществами. В этом случае чувствительные нервные окончания посылают мозгу сигналы тревоги, который отвечает на них защитными рефлексами бронхов, устраняющими причину раздражения или предотвращающими его распространение на более глубокие участки дыхательных путей. К таким рефлекторным реакциям относятся кашель, выработка слизи и спазм бронхиальных мышц.

Чувствительные нервные окончания эпителия особенно интересны в плане изучения хронических заболеваний дыхательных путей. По своим функциям в бронхах они удивительно напоминают рецепторы, фиксирующие повреждения кожи, — ноцицепторы. Задача последних заключается в том, чтобы предупреждать мозг о грозящих повреждениях кожи в результате внешнего воздействия. Создавая болевое ощущение, они провоцируют немедленную реакцию, например отдергивание руки от горячей кухонной плиты. В дыхательных путях в таких случаях вместо боли возникает кашель.

Как и болевые рецепторы кожи, чувствительные нервные окончания в легких могут подвергаться постоянному раздражению. Если в первом случае отмечаются хронические боли, то во втором — хронический нескончаемый кашель, который может продолжаться несколько месяцев.

Пока неясно, каким образом можно нормализовать нарушенный рефлекс кашля. Но то, что существует принципиальная возможность манипулировать степенью возбудимости нервных окончаний, доказывают курильщики. Первоначальный рефлекторный кашель со временем исчезает, в противном случае все бы закончилось уже на первой сигарете. Обращает на себя внимание и еще один аспект, наблюдаемый у начинающих курильщиков: несмотря на сильный кашель, возникающий при курении первой сигареты, спазматического сужения бронхов практически не бывает. Таким образом, необязательно могут появляться все три рефлекторные реакции, иногда они делят обязанности между собой. Это подтверждается и повседневными наблюдениями практикующих врачей: лишь немногие астматики наряду с сужением бронхов страдают и сильным кашлем. При заболевании бронхитом у одних пациентов отмечается сухой кашель, а у других происходит чрезмерное образование слизи. Почему так бывает, нам пока неизвестно. […]

В рубрике «Открытое чтение» мы публикуем отрывки из книг в том виде, в котором их предоставляют издатели. Незначительные сокращения обозначены многоточием в квадратных скобках.
Мнение автора может не совпадать с мнением редакции.

Где можно учиться по теме #биология

Где можно учиться по теме #мозг

Где можно учиться по теме #здоровье

Где можно учиться по теме #сон

Читайте нас в Facebook, VK, Twitter, Instagram, Telegram (@tandp_ru) и Яндекс.Дзен.