Один из популярных детских вопросов «Почему ракеты летают?» для многих остается без ответа. Изучение космонавтики требует глубоких знаний по физике, ракетостроению, астрономии и в других отраслях. Т&Р объясняют, как происходит одно из самых завораживающих научных событий, и рассказывают, благодаря чему ракеты сохраняют скорость, не переворачиваются и преодолевают силу притяжения.

Как устроен реактивный двигатель

Русский революционер и изобретатель Николай Кибальчич создал первый в мире проект аппарата с реактивным двигателем. Однако ученый был казнен. В начале XX века эту идею стал развивать К.Э. Циолковский. Ученый разработал саму схему реактивного двигателя, который работал на жидком топливе.

Ракета способна обеспечивать собственное движение в пустоте за счет реактивной силы. То есть она самостоятельно толкает себя, подобно осьминогу или кальмару. Процесс воспламенения смеси в двигателе является непрерывным — это пример простого твердотопливного двигателя. Еще один тип ракетного двигателя — жидкостный. В нем используется жидкий кислород или азотная кислота, при окислении этого вещества увеличивается удельный импульс — показатель эффективности реактивного двигателя или ракетного топлива.

Несмотря на всю сложность конструкции современных космических кораблей, ракета — один из самых простых летательных аппаратов. В основе ее устройства лежит принцип, согласно которому всякое действие рождает противодействие. Ракета летит, выбрасывая определенное вещество из своей хвостовой части. Несмотря на всю эту простоту, ракеты разрабатывались и совершенствовались в течение более чем семисот лет.

Луис Блумфилд. «Как все работает. Законы физики в нашей жизни»

Луис Блумфилд в своей книге «Как все работает. Законы физики в нашей жизни» приводит в пример движение по скользкому льду. Единственный способ сдвинуться — получить какой-то толчок от самого себя. Необходимо бросить кроссовок, и вы начнете двигаться в противоположную сторону. Вы передали импульс брошенной обуви, и она обратно передала его вам. «Величина импульса кроссовка равна величине вашего противоположно направленного импульса. Естественно, ваша масса намного больше массы кроссовка, поэтому вы двигаетесь гораздо медленнее, чем он», — объясняет Блумфилд.

Движение ракеты предполагает действие двух равных и противоположно направленных сил

Аналогично этому работает реактивный двигатель. Топливо и окислитель попадают в рабочую камеру, смешиваются, сгорают в зоне горения, выделяя огромное количество тепла, которого достаточно для движения.

Траектория полета

Многие убеждены, что ракеты взлетают вертикально, однако это не так. Ракетное топливо может закончиться через 10 минут, а при вертикальном взлете этого времени просто не хватит для выхода на орбиту.

Современные ракеты взлетают вертикально на самом первом этапе, а далее меняют траекторию и двигаются под углом по отношению к Земле. Чем выше высота полета, тем заметнее угол. Ракета совершает гравитационный разворот — маневр, при котором направление тяги совпадает или противоположно направлению движения, изменяющемуся под действием силы тяжести. Этот маневр используется в момент выведения на орбиту или при посадке с нее.

Ускорение ракеты, взлетающей под углом к г...

Ускорение ракеты, взлетающей под углом к горизонту: g — ускорение свободного падения, ae — вклад двигателя в ускорение, a — итоговое ускорение ракеты

Как обеспечивается устойчивость ракеты

«Ракета сохраняет динамическую устойчивость, если суммарный момент приложенных к ней сил относительно центра масс равен нулю при ориентации носом вперед», — объясняет Луис Блумфилд. Иными словами, для того чтобы ракета постоянно двигалась носом вперед и не переворачивалась, двигатель должен создавать силу тяги, которая направлена к центру масс. Второе условие устойчивости — действие аэродинамических сил. Воздушный поток обволакивает ракету и помогает лететь, если сопротивление воздуха у хвостовой части больше, чем спереди. Для устойчивого полета модели ракеты необходимо, чтобы центр тяжести модели ракеты был впереди ее центра давления.

Действие трех скоростей

Нет однозначного ответа на вопрос, с какой скоростью летит ракета. Все зависит от ее типа, загрузки и так далее. Однако все летальные аппараты стараются достигнуть космической скорости — первой (7,9 км/с), второй (11,2 км/с) и, соответственно, третьей (46,9 км/с). Первая позволяет «не упасть» и выйти на орбиту, вторая — выйти из орбиты Земли, третья — преодолеть притяжение. Чем дальше объект, с которого стартует ракета, находится от звезды, тем меньше третья космическая скорость. Например, американский космический зонд «Вояджер-1» движется со скоростью 17 км/с.

Существует и четвертая космическая скорость. Она необходима для того, чтобы объект мог преодолеть притяжение Галактики и выйти в межгалактическое пространство. Например, около Солнца четвертая космическая составляет 550 км/с.