Москва

«Машинное обучение для фундаментальных исследований»

Лекция
300
Событие прошло
Описание встречи

Применение методов машинного обучения стало необходимым этапом анализа данных в физике высоких энергий. Эти методы используются на всех стадиях от первичного сбора данных до финального анализа. В лекции рассматриваются наиболее актуальные разработки в области машинного обучения, позволяющих в экспериментах Большого адронного коллайдера набирать терабайты высококачественных данных.

Особое внимание будет уделено системам сбора и анализа информации в эксперименте LHCb. В докладе также описываются перспективные разработки, использование которых ожидается в следующем запуске Большого адронного коллайдера в 2021 году: использование подходов машинного обучения для ускорения симуляции взаимодействия частиц с детектором с помощью генеративно-состязательных нейронных сетей и контроль качества набираемых экспериментом данных.

Регистрация на сайте организатора

Комментарии

Комментировать
Close